Splicing and transcription-associated proteins PSF and p54nrb/nonO bind to the RNA polymerase II CTD.

نویسندگان

  • Andrew Emili
  • Michael Shales
  • Susan McCracken
  • Weijun Xie
  • Philip W Tucker
  • Ryuji Kobayashi
  • Benjamin J Blencowe
  • C James Ingles
چکیده

The carboxyl-terminal domain (CTD) of the largest subunit of eukaryotic RNA polymerase II (pol II) plays an important role in promoting steps of pre-mRNA processing. To identify proteins in human cells that bind to the CTD and that could mediate its functions in pre-mRNA processing, we used the mouse CTD expressed in bacterial cells in affinity chromatography experiments. Two proteins present in HeLa cell extract, the splicing and transcription-associated factors, PSF and p54nrb/NonO, bound specifically and could be purified to virtual homogeneity by chromatography on immobilized CTD matrices. Both hypo- and hyperphosphorylated CTD matrices bound these proteins with similar selectivity. PSF and p54nrb/NonO also copurified with a holoenzyme form of pol II containing hypophosphorylated CTD and could be coimmunoprecipitated with antibodies specific for this and the hyperphosphorylated form of pol II. That PSF and p54nrb/NonO promoted the binding of RNA to immobilized CTD matrices suggested these proteins can interact with the CTD and RNA simultaneously. PSF and p54nrb/NonO may therefore provide a direct physical link between the pol II CTD and pre-mRNA processing components, at both the initiation and elongation phases of transcription.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptional activity of androgen receptor is modulated by two RNA splicing factors, PSF and p54nrb.

Nuclear receptors regulate gene activation or repression through dynamic interactions with coregulators. The interactions between nuclear receptors and RNA splicing factors link gene transcription initiation with pre-mRNA splicing, providing a coordinated control of the products of gene transcription. Here we report that two RNA splicing factors, PTB-associated splicing factor (PSF) and p54nrb,...

متن کامل

PSF: nuclear busy‐body or nuclear facilitator?

PTB-associated splicing factor (PSF) is an abundant and essential nucleic acid-binding protein that participates in a wide range of gene regulatory processes and cellular response pathways. At the protein level, PSF consists of multiple domains, many of which remain poorly characterized. Although grouped in a family with the proteins p54nrb/NONO and PSPC1 based on sequence homology, PSF contain...

متن کامل

Oxidative modifications of glyceraldehyde-3-phosphate dehydrogenase play a key role in its multiple cellular functions.

Knowledge of the cellular targets of ROS (reactive oxygen species) and their regulation is an essential prerequisite for understanding ROS-mediated signalling. GAPDH (glyceraldehyde-3-phosphate dehydrogenase) is known as a major target protein in oxidative stresses and becomes thiolated in its active site. However, the molecular and functional changes of oxidized GAPDH, the inactive form, have ...

متن کامل

The intracisternal A-particle proximal enhancer-binding protein activates transcription and is identical to the RNA- and DNA-binding protein p54nrb/NonO.

The long terminal repeats of murine intracisternal A particles (IAPs) contain an IAP proximal enhancer (IPE) element that is inactive in murine F9 embryonal carcinoma cells and active in the parietal endoderm cell line PYS-2. The element binds efficiently to a 60-kDa IPE-binding protein (IPEB) present in PYS-2 cells but poorly to F9 proteins, suggesting a role for IPEB in regulating IAP express...

متن کامل

Overexpression of p54nrb/NONO induces differential EPHA6 splicing and contributes to castration-resistant prostate cancer growth

The non-POU domain-containing octamer binding protein p54nrb/NONO is a multifunctional nuclear protein involved in RNA splicing, processing, and transcriptional regulation of nuclear hormone receptors. Through chromosome copy number analysis via whole-exome sequencing, we revealed amplification of the chromosome Xq11.22-q21.33 locus containing the androgen receptor (AR) and NONO genes in androg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • RNA

دوره 8 9  شماره 

صفحات  -

تاریخ انتشار 2002